Python之Numpy系列详细教程【从零到入门】 — 第一章 Numpy中N维数组-ndarray

Python之Numpy系列详细教程【从零到入门】 -- 第一章 Numpy中N维数组-ndarray
强烈推介IDEA2020.2破解激活,IntelliJ IDEA 注册码,2020.2 IDEA 激活码

1. Numpy介绍

Numpy(Numerical Python)是一个开源的Python科学计算库,用于快速处理任意维度的数组。

Numpy支持常见的数组和矩阵操作。对于同样的数值计算任务,使用Numpy比直接使用Python要简洁的多。

Numpy使用ndarray对象来处理多维数组,该对象是一个快速而灵活的大数据容器。

2. ndarray介绍

NumPy提供了一个N维数组类型ndarray,它描述了相同类型的“items”的集合。

ndarray和Python原生list运算效率对比发现ndarray的计算速度要快很多,节约了时间。

机器学习的最大特点就是大量的数据运算,那么如果没有一个快速的解决方案,那可能现在python也在机器学习领域达不到好的效果。

所以Numpy专门针对ndarray的操作和运算进行了设计,所以数组的存储效率和输入输出性能远优于Python中的嵌套列表,数组越大,Numpy的优势就越明显。

3. ndarray的属性

数组属性反映了数组本身固有的信息。

属性名字 属性解释
ndarray.shape 数组维度的元组
ndarray.ndim 数组维数
ndarray.size 数组中的元素数量
ndarray.dtype 数组元素的类型

4. ndarray的形状

例如创建两个数组。

import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = np.array([1,2,3,4])
a.shape
b.shape

打印出的结果是:

(2, 3)  # 二维数组
(4,)    # 一维数组

5. ndarray的类型

>>> a = np.array([[1, 2, 3],[4, 5, 6]], dtype=np.float32)
>>> a.dtype
dtype('float32')

>>> arr = np.array(['python', 'tensorflow', 'scikit-learn', 'numpy'], dtype = np.string_)
>>> arr
array([b'python', b'tensorflow', b'scikit-learn', b'numpy'], dtype='|S12')
名称 描述 简写
np.bool 用一个字节存储的布尔类型(True或False) ‘b’
np.int8 一个字节大小,-128 至 127 ‘i’
np.int16 整数,-32768 至 32767 ‘i2’
np.int32 整数,-2^31​ 至 2^32 -1 ‘i4’
np.int64 整数,-2^63 至 2^63 - 1 ‘i8’
np.uint8 无符号整数,0 至 255 ‘u’
np.uint16 无符号整数,0 至 65535 ‘u2’
np.uint32 无符号整数,0 至 2^32 - 1 ‘u4’
np.uint64 无符号整数,0 至 2^64 - 1 ‘u8’
np.float16 半精度浮点数:16位,正负号1位,指数5位,精度10位 ‘f2’
np.float32 单精度浮点数:32位,正负号1位,指数8位,精度23位 ‘f4’
np.float64 双精度浮点数:64位,正负号1位,指数11位,精度52位 ‘f8’
np.complex64 复数,分别用两个32位浮点数表示实部和虚部 ‘c8’
np.complex128 复数,分别用两个64位浮点数表示实部和虚部 ‘c16’
np.object_ python对象 ‘O’
np.string_ 字符串 ‘S’
np.unicode_ unicode类型 ‘U’

创作不易,白嫖不好,各位的支持和认可,就是我创作的最大动力,我们下篇文章见!

Dragon少年 | 文

如果本篇博客有任何错误,请批评指教,不胜感激 !
在这里插入图片描述

本文来源Dragon少年,由架构君转载发布,观点不代表Java架构师必看的立场,转载请标明来源出处:https://javajgs.com/archives/13851

发表评论