分布式事务原理【理论篇】

分布式事务原理【理论篇】
强烈推介IDEA2020.2破解激活,IntelliJ IDEA 注册码,2020.2 IDEA 激活码

一、本地事务


在计算机系统中,更多的是通过计算机控制事务,这是利用数据库本身的事务特性来实现的,因此叫数据库事务,由于应用主要靠关系型数据库来控制事务,而数据库通常和应用在同一个服务器,所以基于关系型数据库的事务又被称为本地事务。

数据库事务的四大特性:数据库在实现时会将一次事务涉及的所有操作全部纳入到一个不可分割的执行单元,该单元中的所有操作要么全部成功,要么全部失败。只要其中一个操作执行失败,都将导致整个事务回滚。
A(Atomic):原子性,构成事务的所有操作,要么全部执行,要么都不执行;
C(Consistency):一致性,在事务执行前后,数据库的一致性约束没有被破坏;
I(Isolation):隔离性,数据库中的事务一般都是并发的,隔离性是指并发的两个事务的执行互不干扰,一个事务不能看到其他事务运行过程的中间状态。通过配置事务隔离级别可以避免脏读、重复读等问题;
D(Durability):持久化,事务完成后,该事务对数据的更改会被持久化到数据库,且不会被回滚。

二、分布式事务


随着互联网的快速发展,软件系统由原来的单体应用转变为分布式应用,下面描述了单体应用向微服务的演变:
 

分布式系统会把一个应用系统拆分为可独立部署的多个服务,因此需要服务与服务之间远程协作才能完成事务操作,这种分布式系统环境下由不同的服务之间通过通过网络远程协作完成事务称之为分布式事务。例如订单服务于库存服务,银行转账事务等都是分布式事务。举个例子:

begin transaction;
//1、本地数据库操作:张三减少金额;
//2、远程调用:让李四增加金额;
commit transaction;

//什么情况下,会出现数据不一致性的问题?
/**当张三减少成功,李四也增加成功。此时,当李四返回执行成功的结果时,出现了网络问题,
  *此时,本地会以为远程调用失败,回滚张三减少的金额,就会出现张三金额未减少,李四金额却增加的情况。
  *导致数据不一致性问题
  */

三、分布式事务的解决方案


XA协议是一个基于数据库的分布式事务协议,其分为两部分:事务管理器本地资源管理器。事务管理器作为一个全局的调度者,负责对各个本地资源管理器统一号令提交或者回滚。二阶提交协议(2PC)和三阶提交协议(3PC)就是根据此协议衍生出来而来。主流的诸如Oracle、MySQL等数据库均已实现了XA接口。

XA接口是双向的系统接口,在事务管理器(Transaction Manager)以及一个或多个资源管理器(Resource Manager)之间形成通信桥梁。也就是说,在基于 XA的一个事务中,我们可以针对多个资源进行事务管理,例如一个系统访问多个数据库,或即访问数据库、又访问像消息中间件这样的资源。这样我们就能够实现在多个数据库和消息中间件直接实现全部提交、或全部取消的事务。XA规范不是 java的规范,而是一种通用的规范。

四、分布式事务产生的场景


提供服务的各个节点分布在不同机器上,相互之间通过网络交互。不能因为有一点网络问题就导致整个系统无法提供服务,网络因素成为了分布式事务的考量标准之一。因此,分布式事务需要更进一步的理论支持。
【1】微服务架构:微服务之间通过远程调用完成事务操作。例如,订单微服务和库存微服务,下单的同时订单微服务请求库存微服务减库存。简言之:跨 JVM进程产生分布式事务。

五、CAP 理论


CAP 是 ConsistencyAvailabilityPartition tolerance 三个词语的缩写,分别表示一致性、可用性、分区容忍性。下面通过电商系统中的业务场景来理解 CAP,如下,商品信息管理的执行流程:

【执行流程】:【1】商品服务请求主数据库写入商品信息(添加商品、修改商品、删除商品);
【2】主数据库向商品服务响应写入成功;
【3】商品服务请求从数据库读取商品信息;

【Consistency】:一致性是指写操作后的读操作可以读取到最新的数据状态,当数据分布在多个节点上,从任意节点读取到的数据都是最新的状态。上图中,商品信息的读写要满足一致性就要实现如下目标:
【1】商品服务写入主数据库成功,则向从数据库查询新数据也成功;
【2】商品服务写入主数据库失败,则向从数据库查询新数据也失败;

【如何实现一致性】:【1】写入主数据库后要将数据同步到从数据库;
【2】写入主数据库后,再向从数据库同步期间要将从数据库锁定,待同步完成后再释放锁,以免在新数据写入成功后,向从数据库查询到旧的数据;

【分布式系统一致性的特点】:【1】由于存在数据同步的过程,写操作的响应会有一定的延迟;
【2】为了保证数据一致性会对资源暂时锁定,待数据同步完成释放锁定资源;
【3】如果请求数据同步失败的结点则会返回错误信息,一定不会返回旧数据,影响用户体验;

【Availability】:可用性是指任何事务操作都可以得到响应结果,且不会出现响应超时或响应错误;上图中,商品信息读取满足可用性就是要实现如下目标:
【1】从数据库接收到数据查询的请求则立即能够响应数据查询结果;
【2】从数据库不允许出现响应超时或响应错误;

【如何实现可用性】:【1】写入主数据库后要将数据同步到从数据库;
【2】由于要保证从数据库的可用性,不可将从数据库中的资源进行锁定;
【3】即使从服务器还没有实时同步,从数据库也要返回查询结果,即使是旧数据也需要返回。如果没有旧数据则可以返回一个默认信息,但不能返回错误或响应超时;

【分布式系统可用性的特点】:所有请求都有响应,且不会出现响应超时或响应错误。

【Partition tolerance】:通常分布式系统的各各结点部署在不同的子网,这就是网络分区,不可避免的会出现由于网络问题而导致结点之间通信失败,此时仍可对外提供服务,这叫分区容忍性;上图中,商品信息读写满足分区容忍性就要实现如下目标:
【1】主数据库向从数据库同步数据失败不影响读写操作;
【2】其一个结点挂掉不影响另一个结点对外提供服务;

【如何实现分区容忍性】:【1】尽量使用异步取代同步操作,例如使用异步方式将数据从主数据库同步到从服务器,这样结点之间能有效的实现松耦合;
【2】添加从数据库结点,其中一个结点挂掉其他从结点提供服务;

【分区容忍性的特点】:分区容忍性是分布式系统具备的基本功能;

六、CAP 组合方式


在所有的分布式事务场景中不会同时具备 CAP三个特性,因为在具备 P 的前提下 C 和 A 是不能共存的。例如下图满足了 P 即表示实现分区容忍:

【分区容忍的含义】:【1】主数据库通过网络向从数据库同步数据,可以认为主从数据库部署在不同的分区,通过网络进行交互;
【2】当主数据库和从数据库之间的网络出现问题不影响主数据库和从数据对外提供服务;
【3】其一个结点挂掉不影响另一个结点对外提供服务;
如果要实现 C 则必须保证数据一致性,在数据同步的时候为防止向从数据库查询不一致的数据则需要将从数据库锁定,待同步完成后解锁,如果同步失败从数据库要返回错误信息或超时信息。如果要实现 A 则必须保证数据可用性,不管任何时候都可以向从数据库查询数据,则不会响应超时或返回错误信息。通过分析发现满足 P 的前提下 C 和 A 存在矛盾性。

【CAP 有哪些组合方式】:在生产中对分布式事务处理时要根据需求来确定满足 CAP 的哪两个方面:
【AP】:放弃一致性,追求分区容错性和可用性,这是很多分布式系统设计时的选择;上边的商品管理,完全可以实现 AP,前提是只要用户可以接受数据在一定时间内不是最新的即可。通常实现 AP 都会保证最终一致性,通过 BASE 理论可以实现。
【CP】:放弃可用性,追求一致性和分区容错性,我们的 zk 其实就是追求强一致性,比如跨行转账也是一样的。
【AC】:放弃分区容忍性,即不进行分区,不考虑由于网络不通或结点挂掉的问题,则可以实现一致性和可用性。那么系统将不是一个标准的分布式系统,我们最常用的关系性数据库就满足 CA。上边的商品管理,如果要实现 CA 则架构如下:

主数据库和从数据之间不进行数据同步,数据库可以响应每次查询请求,通过事务隔离级别实现每个查询请求都可以返回最新的数据。
【结论】:对于大多数大型互联网应用的场景,结点众多,部署分散,而且集群规模越来越大,所以结点故障、网络故障是常态,而且要保证服务可用性达到N个9(99.99..%)并要达到良好的响应性能来提高用户体验,因此一般都会做出如下选择:保证 P 和 A ,舍弃 C 强一致性,保证最终一致性。

七、BASE 理论


理解强一致性与最终一致性CAP理论中最多满足三项中的两项,其中 AP 即舍弃一致性,保证可用性和容错性,但是生产中很多场景要实现一致性,即使不是实时一致性,也要保证最终数据的一致性。与 CAP 的一致性不同的是,CAP 的一致性要求在任何时间查询每个结点数据都必须一致,它强调强一致性,但最终一致性是允许可以在一段时间内每个结点的数据不一致,但是经过一段时间每个结点的数据必须一致,它强调的是最终一致性。
BASE理论BASE 是 Basically Available(基本可用)Soft state(软状态)和 Eventually consistent(最终一致性)三个短语的缩写。BASE 理论是对 CAP 中 AP 的一个扩展,通过牺牲强一致性来获得可用性,当出现故障允许部分不可用但要保证核心功能可用,允许数据在一段时间内是不一致的,但最终达到一致状态。满足 BASE 理论的事务,我们称为“柔性事务”。
基本可用分布式系统在出现故障时,允许损失部分可用功能,保证核心功能可用。
软状态由于不要求强一致性,所以 BASE 允许系统中存在中间状态(软状态),这个状态不影响系统可用性,如订单的“支付中”,“数据同步中”等状态,待数据最终一致后状态改为“成功” 状态。
最终一致性最终一致性是指经过一段时间后,所有结点数据都将会达到一致,如订单“支付中”状态,最终会变成“支付成功”或者“支付失败”,使订单状态与实际交易结果达成一致,但需要一定时间的延迟,等待。

本文来源程序猿进阶,由javajgs_com转载发布,观点不代表Java架构师必看的立场,转载请标明来源出处:https://javajgs.com/archives/8222

发表评论